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Preface

Symplectic mappings are mostly studied from the global viewpoint of symplectic topology.
This thesis makes a different approach to the understanding of symplectic mappings. The
focus here lies mainly in the local analytical behaviour, especially in regularity properties.
This approach has been motivated by results in the lively theory of quasiconformal map-
pings. In particular, the work of Tadeusz Iwaniec and others has given new impetus to
the study of regularity questions. Symplectic geometry is one further subject of interest
of my advisor Prof. Hans Martin Reimann. This combination prompted the question
whether techniques from the quasiconformal theory could be imitated for the symplectic
theory. In this thesis it is shown that non-differentiable symplectic mappings in Sobolev
spaces behave nicely in various respects; though it was not possible to build a counterpart
of the quasiconformal theory.

In the first chapter some minimization problems are solved within the symplectic class.
As symplectic mappings are of so-called finite dilatation they are good enough that the
global invertibility property in chapter 2 follows. Remarkably, all the coordinate functions
of a quasiconformal symplectic mapping satisfy the same Beltrami equation; here the
techniques of complex analysis in several variables come into play. This is presented in
chapter 3. Finally, the last chapter collects some calculations on exterior algebras. The
consideration of differential forms was one innovation in the quasiconformal theory.

I would like to express me deep gratitude to Prof. Hans Martin Reimann for his constant
encouraging and patient support during the last years. He was an incessant source of
ideas during this work. In this time, I met many people who were willing to share their
knowledge with me. To name just a few, I thank Tadeusz Iwaniec and Serguei Vodopyanov
for explaining me their work. A special thanks goes to Zoltdn Balogh for his guidance
and numerous scientific discussions we had. Finally I thank F. W. and all my friends for
their support, be it mathematical or moral.

This work was supported by the Swiss National Science Foundation.

Andreas Bieri
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1 Symplectic Mappings and the Calculus of Varia-
tions

1.1 Symplectically-Harmonic Mappings
1.1.1 Introduction

The close relationship between holomorphic functions C — C and harmonic functions is
a special feature of the one-dimensional function theory. For higher dimensional complex
manifolds, these concepts are less related in general. However, in the case of Kidhler mani-
folds, the Kéhler condition expresses a compatibility between the Riemannian and the
complex structure which connects the holomorphic and harmonic theory. The following
theorem is a typical statement in this setting:

Theorem 1.1 (/8, p.51])

1. If ¢ is a holomorphic or anti-holomorphic mapping between Kahler manifolds, then
it 18 a harmonic mapping and minimizes the energy in its homotopy class.

2. If ¢ minimizes the energy in its homotopy class and is homotopic to a holomorphic
or anti-holomorphic mapping, then ¢ is holomorphic or anti-holomorphic.

This theorem is one reason to believe that the class of symplectic energy-minimizing
mappings defined below might be a good substitute for biholomorphic mappings.

Notations for this chapter: Let (M, g) and (V, h) denote complex manifolds of real di-
mension 2n, carrying Riemannian metrics g and h. The respective complex structures will
be denoted by J¢ and J"*. These are endomorphisms J? : T,M — T, M, Jg : TyN - T,N,
such that (J¢)* = —idr,» and (J!')? = —idy,n. The Riemannian metrics are Hermitian
or J-invariant if g(J9X,J9Y) = g(X,Y), h(J"X,J"Y) = h(X,Y) for all vector fields
X, Y of the respective tangent spaces. Together with the complex structures we can then
define non-degenerate 2-forms w;(X,Y) := ¢g(X,J9Y) and wy(X,Y) := h(X, J"Y), the
Kdhler-forms of (M, g,J9) and (N, h, J*). If these 2-forms are also closed they are sym-
plectic forms and the manifolds are called Kdhler manifolds. Without further notice, the
manifolds (M, g, J9,w;) and (N, h, J* ws) are supposed to be Kéhler. We fix symplectic
forms w; and wy and we consider the group of symplectomorphisms. A symplectomorphism
of symplectic manifolds (M,w;) and (N, ws) is a (smooth) diffeomorphism ¥ : M — N
such that w; = ¥*wy. The group of symplectomorphisms will be denoted by Symp(M, N)
or Symp(M) = Symp(M, M). Finally, a mapping ¢ : (M, J9) — (N, J") is holomorphic
if J* o ¢, = ¢, 0 J9 and anti-holomorphic if J" o ¢, = —¢, o JY.



1.1.2 Harmonic Mappings

First we recall the notion of a harmonic mapping ¢ : (M, g) — (N, h). For the moment
we suppose M to be compact. The energy density of a smooth mapping ¢ € C*°(M, N)
is defined by

(@)@) = STr(@ @) = 5D (@ Waluiv)
1 2n

i=1

Here {v;}?", is an arbitrary basis of T, M, orthonormal with respect to the metric g. The
energy density is independent of this choice. The integral of the energy density

is called the energy (or action integral) of ¢.
The mapping ¢ is called harmonic if ¢ is a critical point of the energy E on C*°(M, N):
for any smooth variation ¢;, —e < t < £, we should have

d

More precisely, we call a family of mappings ¢; a smooth variation of ¢ if the mapping
®: (—e,e) x M — N defined by

O(t,z) := @(z), —e<t<e
satisfies

®(0,2) = p(z) Ve e M

® € C°((—e,e) x M, N).

Any smooth variation ; defines via

d
V(z):= dt |t:0 vi(z)
a mapping from M into the tangent bundle T'N such that
V(IE) € T(p(w)N Tz € M.

The vector field V : M — TN is called the wvariation vector field along . Conversely,
given such a V satisfying the above property, we define a smooth variation with

Pi(z) 1= expy,y (tV (2))



with the property

We call a variation compactly supported if its variation vector field V' is compactly sup-
ported in M. Since later on we will always have diffeomorphic mappings, we may as well
work with the transported vector field

V:N - TN
y = Vie™'(®)

which is more convenient for our purposes.

Noncompact Manifolds. If the manifold M is not compact we localize the problem:
choose a open subset M’ C M with compact closure and compactly supported variation
vector fields with support in M’. The mapping ¢ is harmonic if ¢ |,,, is a critical point
of the energy for all such variations and all M’.

1.1.3 Hamiltonian Isotopies

Consider a smooth isotopy (—,£) X N = N : (¢, q) — 1:(q) such that ¢, € Symp(N) are
symplectomorphisms and 1y = ¢d. Such a family is called a symplectic isotopy of N. It
is generated by a unique family of time-dependent vector fields X, : N — T'N such that

d
%1/11: = X; 0.

Since the mappings ; are assumed to be symplectomorphic for all £, the vector fields X,
are locally Hamiltonian [7, p.88]: there exists a smooth family of Hamiltonian functions
H,, defined on a simply-connected subdomain U of N, satisfying

w(Xt, ) = dHt on U.

If H; exists globally, 1, is called a Hamiltonian isotopy. On a simply-connected manifold
N every symplectic isotopy is Hamiltonian.

Now let ¢ : M — N denote a symplectomorphism and consider the variation vector field
Vi M — TN along ¢ and its generated variation ¢; := exp, ) (tV (z)).



M-—2>N

-1
N

N
The flow @, 0 ™! : N — N is generated by the time-independent vector field

V:N > TN, V(y):=V(p~(y))

and also satisfies g o g0_1~: idy. By the above, V = X, for all £ and we see that locally
the variation vector field V' is the Hamilton vector field associated to a time-independent
Hamiltonian H:

V(y) = Xu(y), Xug:=J"V'H.

Here V?H denotes the gradient of H taken with respect to the Riemannian metric
h(X,Y) = wy(X, J"Y), cf. [15, p.15].

We are primarily interested in deriving differential equations for symplectic maps that are
critical points for the energy under symplectic variations. For this purpose it is enough to
consider only local variations which are then given by a compactly supported Hamiltonian
which will be extended by 0 to all of V.

Definition 1.2 A smooth, compactly supported variation @y : (—e,&) X M — N is called
symplectic if its variation vector field V : N — TN is (globally) Hamiltonian.

1.1.4 The Euler-Lagrange Equation

Harmonic mappings are solutions of a variational problem and satisfy therefore a system
of partial differential equations, the Euler-Lagrange equation of the problem (this is the
Dirichlet principle). Our aim here is to derive a system of differential equations for the
restricted variational problem formulated for symplectic mappings.

Let ¢;, —e < t < £, be a smooth compactly supported variation of ¢ with variation vector
field V' of support supp(V) = M’ C M. The first variation formula for the energy reads
as follows [41, p. 131]

4 B = - / WV (@), 7()(x))dg. (2)

Here the vector field 7: M — TN, 7 : x — 7(p)(x) is the so-called tension field of . It
is the trace of the second fundamental form of ¢; for this and further formulas see [9, 41].
The first variation formula shows that the vanishing 7(¢) = 0 of the tension field is
equivalent to ¢ being harmonic. However, for a symplectic variation, the vector field V
must be Hamiltonian and thus the condition 7(¢) = 0 will be relaxed. So, in this case,
we use V(z) = Xg(p(z)) to get



WV (z),7(p)(z))dg  supp(V) C M’

1

hMXg(p(z)),7(¢)(z))dg Xy Hamiltonian

1

W(T"V"H (¢ (x)), () (x))dg

!

W(V"H(¢(z)), J'7(¢)(x))dg

l

%L&:oE(@t) = -

I
|
ST T

= +

since the Riemannian metric A(X,Y) = ws(X, J*Y) is J*invariant. Using the abbrevia-
tions o(p) := J"7(p) and y := ¢(z),

= +/ R(V*H(y), 0 (0) (o (y)))dh det J, = 1, change of variables
(M)

= L H(y) - div*o(p)(p ™" (y))dh. (3)

In the last step we used the integration by parts formula [ f-div*(X)dh = — [ h(V" f, X)dh.

The vanishing of (3) for arbitrary H with arbitrary compact support is only possible if
div*a(p) (9™ (y)) =0  VYyeN

or equivalently

divia(p) = 0. (4)

Proposition 1.3 A symplectomorphism ¢ € Symp(M, N) is symplectically-harmonic if
and only if
divf'o(¢) = 0

everywhere on M.

The 3 %-order system of partial differential equations (4) is in general nonlinear and non-
elliptic and therefore difficult to solve. For existence results for related minimization
problems see the section on the direct method of the calculus of variations.

Example. Consider the Euclidean space R?*, equipped with the Euclidean metric. We
denote the coordinates with (z1, Ze, 1, y2) and the components of ¢ : R* — R? with .
Choose the standard symplectic form wy = Z?:l dz; A dy;. Then the components of the
tension field are 7*(p) = Ay’ and we get

9
Oy2

Ayp? — iASO?’ —
3:151

) )
—Ap' + a—mm‘l.

div o(yp) = div J7(p) = 3y
1



Example. As an illustration, we give a very simple symplectic diffeomorphism R? — R?
which is symplectically-harmonic but not harmonic: the mapping

(z,y) = (z+y%2+y +y7)
has all these properties. Its inverse (r,s) — (r — (s — r)?, s — r) is also an example.

Remark. Suppose a situation where we have a symplectically-harmonic mapping which
is not harmonic (e.g. between two strictly pseudoconvex domains in C* that are sym-
plectomorphically but not biholomorphically equivalent). We could then try to apply
the theory of quasiharmonic fields developed by Iwaniec and Sbordone ([18, 19], see also
the last chapter) to the div—curl couple F = [0, VH]. Here the vector field o = J"7 is
divergence-free and the gradient V?H of an arbitrary Hamiltonian function is curl-free.
It would be interesting to calculate the distortion X of such couples and to decide when
they are quasiharmonic fields. Once the calculations above have been generalized to in-
clude non-smooth mappings, a successful application of this theory would imply certain
higher regularity results for symplectically-harmonic mappings.

1.1.5 Symmetry

In this section we show that the inverse of a symplectically-harmonic mapping is again
symplectically harmonic. This is not surprising since the symplectomorphisms form a
group under composition.

The mapping ¢ : M — N will always denote a symplectically-harmonic mapping. Let
Xu be a Hamiltonian vector field with compact support supp(Xyg) = N’ C N. The
time-t mapping of its flow will be denoted by f; in order to distinguish it from the
Hamiltonian isotopy ¢; = f; o ¢. The symplectic diffeomorphism ¢ establishes a one-
to-one correspondence between Hamiltonian isotopies on N and on M. The pull-back
©* Xy = (p7 1) Xy of Xp is again Hamiltonian since ¢*Xy = Xy, cf. [7, p.18].
Therefore, the time-t maps ¢; of the pull-back are symplectomorphisms and the isotopy
¥y := g4 o ¢! is Hamiltonian. Finally, set M’ := ¢~ '(N’). By definition we have
ft o = o g and the following diagram is commutative:

M>M N' CN

oo / Ir

M’ N’

N

M ——= N




Lemma 1.4

| eei@is= [ eewin  yi=p).

Proof.
Choose an orthonormal basis (X;) of T, M with respect to g. Using the Hermitian property
of the metrics and ¢jws = w; we deduce

B0 Xiy 01 Xi) = woluXi, "0 Xi) = @iwa(Xi, ot I 01 X;)
= wi(Xi, o5 TeuXi) = 9(Xi, (J9) 7 op! T ouX;)

and therefore (recall formula (1))
e 1
e(pe)(z) = 3 Z 9(Xi, (J) " on! T Xs) = ETT(J‘(])_IQD;‘IJ’L%*-
i=1
Repeating this for an orthonormal basis (Y;) of T,N gives

e(pr)(y) = %TT(J")‘I%*J%;I.
Equality follows now from (J")? = —id and (J9)? = —id:
Tr(J) " op! T on = —Tr(J%p ) (T eu) = —Tr(I*0u)(J?¢,)
= Tr(J") " ou(J9) s
and the lemma is proved.

Let E; and E, denote the energies of ¢y and ¢, L,
Bit) = [ ew)ldh= [ elgiop)w)dn
Bt) = [ elo)wab= [ el o L))an

From the commutativity of the above diagram we get g, o ¢! = ¢! o f, which implies
Ei(t) = E5(—t) —e<t<e. (5)

Proposition 1.5 A symplectomorphism ¢ is symplectically-harmonic if and only if =1
18 symplectically-harmonic.

The proposition follows from the lemma and (5):

d d
%|t:0E(§0t) = %|tzo/,€(€0t)($)d9= %|t:0E2(t)

d d
Gleol@) = Sleo [ ew@)ah= FloBi(0).



1.2 Symplectic Mappings of Sobolev Class
1.2.1 Definition and First Properties

We shall now define symplectic mappings of Sobolev class. For the sake of simplicity, we
will do so only for mappings between domains 2 in Euclidean space R?" with coordinates
(1, s Tny Y1, - -+, Yn). The symplectic form will always be the standard symplectic form
wo = Y, dz; A dy;. There is no real loss of generality in doing so since (R*",wy) is the
generic local model for all symplectic manifolds by the theorem of Darboux.

Recall that a (smooth) symplectic mapping (or symplectomorphism) is a diffeomorphism
I (B2 wy) — (R%™,wp) such that f*wy = wp. In the coordinates chosen above, this
condition takes the form

Df(x)TJDf(z)=J VzecR™

where J is the skew-symmetric matrix defined by J = ( 1d —Idn
n
From this we conclude that the Jacobian determinant satisfies Jf = 1. It turns out that

in fact Jr = 1. This is easily seen using differential forms: the 2n-form
Q:=wogAwogA--+Awy n times
is a volume form on R?"
Q=c-de  AN---Ndxy, Adyy A -+ - ANdyy,

where ¢ # 0 is a constant. From f*wy, = wp it follows f*Q2 = € and using the fact
Q= Js - Q we conclude J; = 1.

We propose the following definition for non-smooth symplectic mappings:

Definition 1.6 Let Q@ C R*™, n > 1, be a domain. A mapping f € W2 (Q,R*™) is
symplectic (with respect to the standard symplectic form wy) if

Df(2)TIDf(z) =J  for almost every z € Q. (6)

Some remarks on this definition are in order. The derivative matrix Df is the formal
derivative of f; its elements are the weak (distributional) partial derivatives of the co-
ordinates of f which exist as L}"-functions. The definition does not suppose that f is

differentiable in the ordinary sense. Note also that mappings in W,,”"(Q, R?") need not
have a continuous representative. These regularity properties will be consequences of the
symplecticity condition (6). The important point here is that the Jacobian determinant

J¢ of f is almost everywhere equal to 1. In particular, the Jacobian does not change sign.



The symplectic mappings are special mappings of finite dilatation in the sense of the
following definition [20]

Definition 1.7 Let f € W.P(Q,R*), 1 < p < oo, and let |Df(z)| designate the supre-
mum norm of the matriz D f(x). The mapping f has finite dilatation (or is a mapping of
finite dilatation) if a measurable function Ky exists such that

i) The bound 1 < K¢ < oo holds for almost every « € ,

i) For almost every x € Q,
[Df(@)|" < K¢(z) - Jp(x). (7)
Such a function Ky is then called a dilatation function of f.

This class contains the maps with bounded dilatation (when ||K¢||.c < K for some
constant K), nowadays more widely known as gquasiregular mappings. Any mapping
f € WiP(Q,R*) with J; > 0 almost everywhere is of finite dilatation; in particular, this
applies to symplectic mappings. Despite the seemingly weak conditions, mappings of fi-
nite dilatation retain some important analytical properties of quasiconformal mappings.
The following properties will be of fundamental importance for further calculations:
Theorem 1.8 Let f € W™ (Q,R*) be a mapping of finite dilatation. Then

loc

1. f has a continuous representative (also called f) satisfying

—1/n
@) = 1] < CoIDfln (o5 2 ) oy € K 2 compact

2. f s differentiable pointwise almost everywhere in the ordinary sense,

3. f satisfies Lusin’s conditions (N) and (N7Y), i.e. the image of a set with zero
Lebesgue n-measure is a set of zero measure and also the preimage of a zero-set is
a zero-set.

Remarks: Property 1 is a consequence of the fact that these mappings are monotone.
The original proof goes back to 1977 and is due to Gol’dshtein and Vodop’yanov ([42],
see also [37, p. 339]). A more recent proof of assertion 1 can be found in [28].

The estimate of the modulus of continuity given in 1 shows that in W,>"(Q, R*) a bounded
family of maps is equicontinuous. The proof of 2 is the same as for mappings with bounded
dilatation; equicontinuity is enough for the proof [37, 1.1.2].

The Lusin condition (V) implies in particular that the image of a measurable set is mea-
surable and it plays a major role in many change-of-variables formulas. Even a continuous

mapping of Sobolev class W™ need not satisfy the Lusin condition as an example of Maly



and Martio [26] shows. They construct a mapping of class W™ which maps a line seg-
ment onto the unit cube. The (N~!)-property follows from J;(z) > 0 almost everywhere
([42, 2.3, 2.4]). For a detailed account of the Lusin (IV)-condition see [26, 30].

Recent advances in the theory of quasiregular mappings might suggest that the integra-
bility assumption f € WhH*(Q, R") could be relaxed [17]. An example by Ponomarev [34]
indicates that the exponent n is indeed “critical”: For all 1 < p < n, he constructed a
one-to-one mapping f € WhP(Q2, R") with J; > 0 a.e. which does not have property (V).

Example. It is a non-trivial task to give symplectic examples with prescribed regularity.
The most natural way of constructing symplectic mappings is to obtain them as time-1
mappings of a Hamiltonian flow. A step towards a theory of non-smooth Hamiltonian
systems has been done e.g. by Kiinzle [24], but a precise theory linking the properties
of the flow and the vector field seems to be missing. In the cited article it is shown that
non-smooth systems can violate fundamental properties valid for smooth systems. For
example, a symplectic mapping derived from a non-convex Hamiltonian H (see the article
for the precise definition) need not preserve the level sets of H.

At least, we have the following, admittedly somewhat trivial, example:

Take A, Ao € WP(R) and consider the shear-map R! — RY, (21,91, T2, y2) — (2}, 9}, Th, v5)
given by

i = o+ My)n

yi = U
Ty = Za+ Aa(y2)ye
yé = Y.

This mapping is symplectic since dz} A dy} = (dz; + Xi(yi)dy; + yig—;\:dyi) Ady; = dz; A dy;,
and belongs to W07 (R*, RY).
More examples result from the thesis of Gratza [12]. He showed that smooth symplectic

mappings can be approximated uniformly with piecewise linear symplectic mappings.

1.2.2 Direct Method of the Calculus of Variations

In the first section we derived the Euler-Lagrange equation for symplectically-harmonic
mappings, but we couldn’t provide criteria for solvability of this problem. Here we will
show that some minimization problems have symplectic solutions. This will be achieved
using the Direct Method of the Calculus of Variations and noting that the class of sym-
plectic mappings is closed under weak convergence.

Definition 1.9 Let X be a Banach space with norm || - ||. A functional I : X — R is
said to be sequentially weakly lower semicontinuous (swlsc) if

lim inf I(uy,) > I(u)
n—00

whenever u, — u in X. The functional I is coercive on a subset A of X if ||luy|| = o
for u, € A implies I(u,) — oc.

10



Theorem 1.10 Let A be a weakly closed subset of a reflexive Banach space X and let
I : X — R be sequentially weakly lower semicontinuous and coercive on A . Then I
attains a minimum an A.

Proof: Choose a minimizing sequence u in A, i.e. a sequence of u, € A such that
I(uy) — infy,e 4 I(uw). The coercivity condition forces uy to be bounded in the reflexive
Banach space X. Therefore we can extract a subsequence uy, — 4 converging weakly to
some @ € A. The theorem follows as the functional I is swlsc:
I(z) < liminf I(ug,) = inf I(u).
(@) < lim inf I (us,) = inf I(u)
O
The swlsc property is in general not easy to check; the discussion of necessary and sufficient
conditions for it makes up a significant part in the literature in the calculus of variations.
We will now place us in a more concrete setting and then choose a class of functionals

that will be broad enough for our purposes.
For the rest of this section we consider functionals of the form

I(u) = / f(z, Du(z))dz (8)

where 2 C R" will always be a bounded domain with sufficiently smooth boundary,
u: Q=R f: QxR — R continuous. The reflexive Banach space X will typically
be W&”’(Q,R"), 1< p<oo.

Theorem 1.11 [29] Let QO C R" be open and bounded. Assume g : @ x R — R
is continuous and g(z,-) convez for all z. Let w; € L}, (2, R™) be a sequence which

loc
converges as a distribution to w € L, (Q,R™). Then

liminf/ g(z, w;(z))dx > /g(z,w(z))dm.
This theorem, although not stated in the most general way, applies already to a large
class of functionals as the next theorem shows.

Theorem 1.12 [6, 4.2.6] Let @ C R be open and bounded and 1 < p < oo. Let u;
converge weakly to u in W'P(Q,R*). If p > k then any k X k — minor of Du; converges
in the sense of distributions to the corresponding minor of Du.

The assertion of the theorem might be surprising at first sight. The minors consist of
products of weakly convergent sequences of functions and these products will a priori not
converge anymore. But this reasoning is too crude. Weak continuity is a consequence
of the cancellation effects due to the special structure of the minors; any minor can
be expressed as divergence of a suitable vector field ([6, 4.2.7]). The very existence of
nonlinear weakly continuous functions is a strictly higher-dimensional phenomenon.

11



We could then ask to identify all weakly continuous functions f : R**™ — R such that
f(Du;) — f(Du) converges as distribution for every sequence u; — u converging weakly
in some suitable W1?(Q, R*). This question has been solved by Reshetnyak [38, 39] and
Ball [1, 2, 4]: a continuous f is sequentially weakly continuous if and only if it can be
written as an affine combination of the minors (subdeterminants) of any size of Du. The
Jacobian f(Du) = J, is such an example.

We see that we may take any minor for w; in theorem 1.11. The most general function g
depends on all minors of all sizes k (as long as p > k) and there are _,_, (})(}) of them.
A function f is called polyconvez if it can be written as a convex function of the minors.
Theorem 1.11 and 1.12 show that I(u) = [, f(z, Vu)dz is swlsc if f is polyconvex.

Examples of lower semicontinuous functionals.

1. ([6, A.1]) Let f : R**™ — R and let A be a n X n-matrix. Recall that the singular
values v1,...,v, of A are the eigenvalues of the positive semidefinite symmetric
matrix vV AAT. If f satisfies f(A4) = f(QA) for all Q € SO(n) and f(4) = f(QAQT)
for all @ € O(n), then there exists ® : (R;)” — R, symmetric in the variables (that
is, invariant under permutations of the variables), such that f(A) = ®(v1,...,vn).
Then f is convex if and only if ® is convex and non-decreasing in each variable v;.
This result comes handy when dealing with symplectic mappings:

Recall the Cartan decomposition

A=U,DU,

of a symplectic matrix A. Here Uy, U, € U(n) = O(2n) N Sp(n) are unitary and the
diagonal matrix D = diag(A1, ..., A, AT, -+, A7 1) consists of the singular values
i, A7t > 0 of A.

2. Let f € W™(Q,R™) be a mapping of finite dilatation (|A]| is the sup-norm of a

loc
matrix A):

|IDf(z)|™ < K¢(z) - J¢(z) almost every z € .

The dilatation function (more precisely, the outer dilatation)

= { PR 2

is polyconvex on matrices with positive Jacobian [11] and therefore the functionals

()= [ Kj@ds  p21

are weakly lower semicontinous. Consider also the linear dilatation defined by

max{| D f(z)h|:heS" 1}
H¢(z) = { min{ D @hhes=)  J£(2) >0

1 otherwise
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In contrast to above, the linear dilatation is not lower semicontinous, see [16]. For
symplectic mappings however, we can express it as H;(z) = max?_; \? = |Df(z)|?,
which is a symmetric, convex and non-decreasing function in the singular values
(Ao A, AT -, A2 and hence

m(f) = [ A pz

are weakly lower semicontinuous.

3. The p-energy of a mapping f : (R, (,)) — (R",(,)) with respect to the Euclidean
metric (,),

B = [ )@y = (%)W [ @pr@ D)y
- ") (%JDJ”(%) fj)m dz = L{|DS,

is clearly lower semicontinuous. Lower semicontinuity for the energy £ = Ej is also
known for mappings f € L?(M, N) between Riemannian manifolds [21]. In this
general situation subtle problems arise already when defining the notion of Sobolev
space.

1.2.3 Existence of Symplectic Extremal Mappings

We show that some minimization problems can be solved within the class of symplectic
mappings. First we fix this class of admissible mappings for the variation. We suppose
that ug € A is some given symplectic mapping. Typically, ug is a smooth symplectomor-
phism from © onto its image Q. We assume that Q is a Sobolev extension domain (later
we need the Poincaré-inequality). Let

A= {u € WH(Q,R?) : u symplectic, u — ug € Wy 2" (), R*)}.
0

Definition 1.13 We call u € A a symplectic extremal mapping of the functional
I: Wb (Q,R?*") — R for the boundary values ug if I(u) < I(w) for allw € A .

We can now state the existence results:

Theorem 1.14 Letp > 1, ¢ > n, r > 2n. Then the functionals K,, H; and E, attain a
minimum on A, i.e. there exists an extremal for the boundary values ug.

The proof is virtually the same as in the abstract setting. First, we check that the
admissible class A is closed under weak convergence.
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Proposition 1.15 Let (u;) be a sequence of symplectic mappings converging weakly in
W,22M(Q,R?"). Then the limit mapping @ is symplectic.

loc

The proof of the proposition makes essential use of the weak continuity of minors of the
matrix Du;(z).

Proof: The weakly convergent sequence Du; is bounded in L**(Q, R?**2"). The adjoint
A" of a matrix A is the transposed matrix of the (2n — 1)-minors of A with signs and has
the property A*A = det A - Id. The adjoint of a symplectic matrix A is given by

A= A" = JTAT J.

Applying this to Du; we deduce the boundedness of Dy, in L*"(Q, R®**2"). Thus, we
may extract a weakly convergent subsequence of u; (still denoted by u;) such that

Diu; — M in L*"(Q, R?X2m),
This sequence converges also in the sense of distributions. Theorem 1.12 asserts
Du’U,j — D”a.

The limits D@ and M must be the same by the uniqueness of distributional limits. Now
we have to show that M = D"a is symplectic. First, a similar reasoning shows J; = 1
almost everywhere. The symplecticity condition ATJA = J can be equivalently stated in

the form
A =g . AT . J

provided det A = 1. From
Diu; = J'-DTu;-J
D'u; — D'a  in L*™(Q,R*™*")
and the convergence
JT DTy J—J"-D"a-J

we conclude
D'a(z) =JT -DTa(z)-J  ae z€Q

and the proof is finished. [l
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Proof of 1.14: Let I denote one of the functionals of the proposition.
Choose a minimizing sequence (u;) of I in A :

u; €A, ]11)120 I(u;) = inf{I(u) : u € A}.

Note that A contains ug by assumption and I(u) < oo for u € A. It remains to check
that I is coercive. Recall the Poincaré—inequality

Lemma 1.16 Let Q be a bounded Sobolev extension domain. Then for u € WyP(Q),

1 <p<oo,
1/p 1/p
( / |u|”d:v> < Cp,9) ( / |Vu|pd:v> |
Q Q

It states that on the space W,” () the Sobolev norm ||u||w1e = (||u|[%, + ||Vu|[2,) /7 is
equivalent to ||Vul|rs.

By applying the Poincaré inequality to u; — uy componentwise we see that all the func-
tionals of the theorem are coercive. In fact, for p = 1, ¢ = n, r = 2n the functionals grow
like the L*-norm of Du,;. This lower bound is also valid for higher exponents since the
power function is convex (use Jensen’s inequality).

Now the proof proceeds as in the abstract setting. A subsequence of u; converges weakly
to a limit mapping 4. This limit satisfies @ — ug € W,">"(Q, R?*) and is symplectic by
proposition 1.15. Thus z € A and the proof is finished. Ol

1.2.4 Extremal Symplectic Mappings for Noncompact Manifolds

So far we have seen that some minimization problems can be solved abstractly within
the class of symplectic mappings. The problem really gets interesting and much more de-
manding when we consider variational problems involving general Riemannian manifolds,
especially noncompact ones. Since their volume is infinite, it is in general not possible to
minimize some functional directly on the whole manifold. This applies at least for many
functionals we are interested in (i.e. those that are coercive with respect to the Sobolev
norm of the manifold). An obvious idea is to solve local variational problems and to define
the global mapping by a second limit process. We present such an approach here and
describe a problem that could not be solved.

Consider the following model situation:

Let @ : (Q,wp) — (', wp) be a given smooth symplectomorphism between subdomains of
(R?" wg). Suppose these domains carry a Riemannian metric g of infinite volume and we
want to minimize a functional

() = /Q F(z, Du(z))dg(z)

which is coercive on the Sobolev space corresponding to g. Our aim is to construct an
extremal mapping by exhaustion and a normal family argument: Let {1, be an exhaustion
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by domains €, C Qg1 C Q, UQ, = Q. Suppose that F'is such that the local minimization

problems
I% (u) < I%(v), v symplectic, v — ®|q, € W, " (%, R?")

are solvable in WhH2"({);, R?") and give a family of (continuous) symplectic mappings
{ur}. We extend uy to W2t (Q, R?").

If we could show that {uy} is locally pointwise bounded and locally equicontinuous, then
the theorem of Arzela— Ascoli would give us the desired continuous (and monotone, since
this is preserved under local uniform convergence) limit mapping.

Both local boundedness and equicontinuity follow if {u;} is locally bounded in Sobolev
norm, say in WhH (D, R?") where D C Q is fixed (theorem 1.8).

We have been unable to prove this. Although Ij(ug) is minimal amongst all admissible
mappings with boundary values given by ®|g,, it is not clear whether ||ug||w1.20(pron)
stays bounded. It could be that IP(u;) — oo despite of I (u;) < I%(®) since I%(P)
grows like the weighted Sobolev norm. The boundary values uy|sp are different from ®|5p
and we cannot argue that IP(u;) < IP(®). It is hard to imagine that a monotone uy,
should behave very wildly on D and, because of uy — ®|o, € W, ™" (4, R*®), be very tame
near 0¢). One should have a good estimate on the oscillation on D keeping account of
the distance from D to 0€) so that the growth of ||ug||w120(pree) Will be compensated
by the growing distance. The Harnack inequality for monotone functions f in [28] doesn’t
solve the problem because it also depends on the local norm of log f.
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2 Global Invertibility of Symplectic Mappings

2.1 The Mapping Degree

Let Q C R?® be a nonempty bounded open set and let v : & — R® be a continuous
mapping. Consider a nonempty bounded domain G CC Q. A point p € R" is called
(u, G)-admissible if yp ¢ u(0G). The Brouwer mapping degree (also called local degree or
topological index) of u with respect to G assigns to every (u, G)-admissible point p an inte-
ger d(u, G, p). The mapping degree satisfies a list of axioms (solution property, naturality,
excision, additivity, homotopy invariance and normalization) which in turn determine d
uniquely. The degree is constant on the connected components V' of R*\u(9G). We de-
note the common value with d(u, G,V). Furthermore, it depends only on the boundary
values of u. For mappings u € C'(G) we can calculate the degree with the formula

d(u, G, V) = / p(u(2)) Tu(2)dz (9)

where p is an arbitrary non-negative real-valued continuous function with compact support
in V and satisfying the normalization [, p(y)dy = 1. For this formula and a detailed
exposition of degree theory see [40]. We show now that the formula (9) remains valid
for continuous mappings u € WH*(Q,R*). Both sides of (9) are still defined for such
mappings. The continuous mapping u can be approximated by a sequence of smooth
mappings u. such that ([32], p.11):

i) u. — u locally uniformly
i) ue = win L™(Q)
iii) For all G CC : Du, — Du in L™(Q).

Such an u. can be defined by mollifying with a Sobolev averaging kernel:

u6<x>:=§n / oDy, @ eCPQ), ¢20, / p(z)dz = 1.

Now take an (u,G)-admissible point p, i.e. p € u(90G). For £ small enough, p is still
admissible for u. by locally uniform convergence. The degree is invariant under homo-
topies and it follows d(u, G, p) = d(u., G, p) for £ small enough. Formula (9) is valid for
u. and it remains to check that the right-hand side converges but this follows from prop-
erty iii) above (note G CC ). Thus we have checked the validity of (9) for continuous
u € Whn(Q).

It’s possible find a better approximation [37, p. 87]:

Lemma 2.1 Let G be the closure of a bounded domain in R™, and let v : G — R* be
continuous. Then for every (u,G)—admissible point p there exist a sequence of smooth
mappings u. : G — R™ such that u, converges to u uniformly on G and each of the
mappings is regular with respect to p, i.e. p is (ue, G)—admissible, the set u='(p) is finite
and the Jacobian is nonzero at the points of u='(p).
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Definition 2.2 Let f : G — R be a function and A C G. The multiplicity N(u|A4,y, f)
of a mapping u : G — R at a point y € R* is defined by

Nuldy,f)= Y, [l

z€u~1(y)nA

In particular, for the constant f = 1, we denote by N(u|A,y) = N(u|A,y,1) the cardi-
nality of u='(y) N A. The function N(u|A,y) may be infinite.

The assertions of the following theorem are the same as in [3], but the assumptions are
different: our mappings are only in the class WH*(Q, R*) and are therefore not Holder-
continuous. Furthermore, we do not require the boundary G of G to be Lipschitz; we
only need that it has zero Lebesgue n-measure.

Theorem 2.3 Let Q) C R™ be a nonempty bounded domain and u € Wh™(Q, R*). Suppose
Ju(z) > 0 almost everywhere in Q. Let ug : Q@ — R be continuous and injective in Q.
Let G CC Q be a relatively compact domain with |0G| = 0 and u|0G = ug|0G. Then

1) u(G) = uo(G)

2) u maps measurable sets in G to measurable sets in ug(G) and the change of variables
formula

/A Fu(@)Ju(@)da = / e

holds for any measurable A C G and any measurable f : R* — R if one of the
integrals exist.

3) u is one—to—one almost everywhere: the set
S = {v € up(G) : u(v) contains more than one element}

has measure zero.

4) if v € up(G) then u='(v) is a continuum (closed and connected) in G. If v € Ouy(G)
then each connected component of u=(v) intersects 0G.

Remarks

1. The assumption J,(z) > 0 a.e. implies that u is a mapping of finite dilatation; see
section 1.2.1 for a discussion. In particular, u is monotone and has a continuous
representative. We will always assume that the continuous representative has been
chosen. The unbounded component of R*\u(9G) does not contain points of u(G)
since u is monotone [37, p. 176].
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2. The mapping u is continuous up to (and beyond) the boundary of the subdomain
G by the assumption of the theorem. There is no need to construct an extension
to a bigger domain and therefore G need not be a Sobolev extension domain. This
condition will however be needed for the proof of the main theorem.

3. Let u be symplectic. Then J,(z) = 1 almost everywhere and u is therefore measure-
preserving according to 2). This does not trivially imply |[S| = 0.

4. Assertion 3) follows from 4) with the theorem

Theorem 2.4 [30] Let u € WH(Q,R") be a continuous mapping. Then f~(y) is
totally disconnected for almost all y € R.

Proof of theorem 2.3: [3]
1) The invariance of domain theorem implies that uy is a homeomorphism of G onto the

open set ug(G). Therefore ug(G) = up(G) and Auy(G) = up(0G). Furthermore

d(UO,G,Uo(G)) = +1
d(ug,G,p) = 0 peR"\uy(G)

For the first statement see [ [40], p.98] or [ [35], IV.4.6]. The second is just the solution
property of the degree. Since J,(z) > 0 a.e. formula (9) implies d(u,G,p) > 0 (u is
sense—preserving) and since u|0G = uy|0G it follows that

d(u, G,up(G)) = 1 (10)
d(u,G,p) = 0 peR"\uy(G)

Therefore if p € uo(G) then u='(p) is not empty. Hence u(G) D uo(G). Let p &€ uo(G) and
suppose for contradiction that u(z) = p for some z € G. Apply (9) with V the component
of R"\ug(G) containing p and with p strictly positive in a neighbourhood U of p. The
continuity of w implies that a small ball around z is mapped into U. Since J,(z) > 0 a.e.
the right-hand side of (9) is positive. This contradiction proves 1).

4) Let v € ug(G) and suppose that the closed set u~!(v) is not connected. Then there
exist nonempty subsets M, My, Ey, Ey of G with E, Es open, such that M; N M, and
E1NEy are empty, u' (v) = MiUM,, My C E; and My C Es. Since v € u(0E;) Uu(0Fs)
and since Jy,(z) > 0 a.e., the degrees d(u, E;,v), i = 1,2, given by (9) are defined and
positive for p in a neighbourhood U of v. Therefore U C u(E;)Nu(FEs), a contradiction to
3). The argument for v € Auy(G) is similar: suppose that a connected component M of
u~'(v) does not intersect G. Choose open sets E; and Es of Q with M C Ey, EiNEy = ()
and E containing the (unique) point of u~'(v) on dG. Again d(u, E;,p), 1 = 1,2, are
positive for p in a neighbourhood U of v and the contradiction U C u(E;) Nu(FE2) results.
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2) and 3) Since u has the (N)-property it maps measurable sets A C G to measurable
sets u(A). There are several theorems about change of variables available, we use the
following which can be applied in our situation:

Theorem 2.5 [37, p. 99] Let Q be an open set in R", and u : Q@ — R* a continuous
mapping. Assume that u has property (N) and is differentiable a.e. in Q with locally
integrable Jacobian. Then for every nonnegative measurable function f : @ — R the
function y — N(u|Q,y, f) is measurable on R™, and

N(ulQ, g, )dy = / F(@)| () da (11)

R~
Further, if G C € is the closure of a bounded domain whose boundary has measure zero,
then, for every monnegative measurable function f : R* — R such that the function
y— N(u|G,y)f(y) is integrable, the function

2 = f(u(z))Ju(2)

s tntegrable over G and
| ra@nin@las = [ rwNe. (12)
| ru@)n@is = [ 1w G.oay (13)

In particular we take f = 1. Note that we have u(0G) = Ouy(G) and J,(z) > 0 a.e. We

deduce that
/ N(u|G,v)dv =/ Jy(z)dz. (14)
uo(G) w1 (uo(G))

By formulas (9) and (10) we have

| = /G o(u(2)) Ju(2)dz (15)

for any continuous, nonnegative p with suppp CC uo(G) and g, p(y)dy = 1.

Now take ¢, € C(R) with suppy CC uw(G), 0 < ¢, < 1, ¢,.(p) = 1 if p € uy(G) and
dist(p,due(G)) > 1. Let p, == W¢T and apply (15) to it, passing to the limit using
Lebesgue dominated convergence:

[utar - / e (u(2)) Ju () do

lim '@[}r(p)dp = lim ’(/}T(U(IE))JU(IE)CZIE

Tr—0C0 Tr—0C0 U_I(UO(G))

[limvwds = [ lim () u(e)ds
Tr—00 U_I(UO(G)) Tr—0C0

uo(G)| = /_1( o, (16)
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Combine (14), (16) and use N(u|G,v) > 1 for v € uy(G) and we see N(u|G,v) =1 a.e.
in uy(G). Note |0ug(G)| = |up(0G)| = |u(0G)| = 0 since |0G| = 0 and u has property
(V). This proves 3) and assertion 2) follows from (12), applied to f - Xu(4)-

2.2 Global Invertibility

One of the prominent features of the theory of (smooth) symplectic mappings is the
symmetry resulting from the fact that symplectic diffeomorphisms form a group. Philo-
sophically speaking, the inverse of a symplectic mapping should have the same (analytical,
geometrical) properties as the mapping does. We have already seen one instance of this
principle when we proved that the inverse of a symplectically-harmonic mapping is also
harmonic. Our main result in this section is another example. Based on theorem 2.3
above, we show that symplectic mappings are homeomorphic.

Theorem 2.6 Let the hypotheses of theorem 2.8 hold and let u € W2 (Q, R*") be sym-
plectic according to definition 1.6. Suppose ug(G) is a Sobolev extension domain. Then

u|G is a homeomorphism of G onto uy(G) and the inverse mapping is again symplectic
and belongs to W1 (u(G), R*") .

Remark: The topological condition u|0G = uy|0G may not be omitted. An example [3]
shows that then even local invertibility fails: the (symplectic!) mapping v : D — D of the
unit disc in R? given in polar coordinates as u : (1, ) — (%r, 2¢) satisfies u € WH*(D)
and J,(z) = 1 if  # 0 but is not locally invertible at the origin.

This theorem is an adapted version of theorem 2 in [3]. Our result differs from that in
some respects: First, we do not require a higher integrability v € W9, ¢ > 2n. The
original argument involving the cone condition will be replaced by an application of the
estimate of the modulus of continuity for mappings of finite dilatation. The condition
Jo | D7 () |2, (z)dr < oo which is necessary in general is automatically satisfied by
symplectic mappings. Furthermore, the domain uy(G) need not be Lipschitz. For more
information on Sobolev extension domains, see [13]. In the proof, we will follow closely
the ideas and the organization of [3]. While we omit some calculations, we (re)produce
a complete reasoning.

Proof: The inverse mapping z(-) € W1?"(uy(G), R*") will be constructed as a limit of a
sequence of smooth mappings that may be seen as an ”averaged inverse”. If z(-) is indeed
the inverse of u, then such a sequence is given by mollifying with a Sobolev averaging
kernel p. € C§°(B:(0)), pe > 0, [gon pe(v)dv =1

or

7e(v) = / pe(v — u(y))yu(y)dy. (17)



Given only u, we define z. : R?* — R*" by (17) and prove that z. converges to the inverse
of u. The calculations in [3, p. 321-322] show

aIE n —2n
[IFa2 @ < [0 o)y (18)
G Vi
for € sufficiently small. Here z are the components of z. = (z.,...,2?") and D¥ is the

adjoint matrix of Du, i.e. the transpose of the matrix of the cofactors of Du. Surprisingly,
this estimate is independent of e. We apply D#u = Du~' = J"Du"J and J, =1

AT

Thus (z.) is bounded in WH*"(uy(G), R?™) for sufficiently small £ and we can extract
a subsequence (again denoted by (z:) ) converging weakly in WhH2"(uo(G), R*") to a
mapping z(-).

The next step is to show that z(-) is a right inverse of u:

3:57

Ta =3 [ Dusla < 1D 19)

u(z(v)) =wv for all y € ug(G). (20)

Let S be the set where w is not injective. By theorem 2.3 we know |S| = 0. So for
any v € ug(G)\S there is exactly one z € G with u(z) = v. Recall the definition of z.,
equation (15) and J, = 1:

ze(v) — 7 = / o) )~ / 22 (u(y)) Ju(y)dy = / pe(u(z) — u(y)) (y — 2)dy
(21)

for small ¢ < £;. Let n > 0. The uniqueness of x and the continuity of u imply the
existence of a § > 0 such that |y — z| < n whenever |u(z) — u(y)| < 4. Otherwise we
could construct a sequence converging to some point different from x but the image of
this sequence would converge to v. If € < min(d, 1) then

2e(v) — 2] < - / pe(u(z) — u(y))dy = 7 d(u, G,v) =7

and we conclude z(v) = z and u(z(v)) = v for all v € uo(G)\S. This equality still holds
for v € S by density, provided z(-) is continuous on uy(G). We show now that z(-) is
symplectic and therefore has a continuous representative (in the following z(-) will always
denote the continuous representative). Note that z(-)|u,(@)\s is the inverse of u on the set
u~ ! (up(G)\S) which has full measure because of the (N~!)—property. Since the symplectic
mapping u is differentiable in the ordinary sense a.e on this set, the inverse mapping z(-)
is also differentiable almost everywhere and its derivative matrix is also symplectic almost
everywhere on uy(G).
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The mapping u is monotone; because of this we know that the unbounded component
of R*"\u(0G) = R*"\uy(0G) = R?"\Ouy(G) does not contain any points of u(G). But
it could happen that some point z € G is mapped to the boundary Jug(G). We will
show that this is not possible in our situation. From our considerations so far, we can
conclude that B := z(uo(G)) is an open subset of G of full measure and z : uo(G) — B
is a monotone homeomorphism: Let y € B and take a sequence y, € B with y, — y and
u(y,) ¢ S. By (20) and using that u(y,) has an unique inverse image under u (namely
Yr) we get
z(u(yr)) = yr-

Using the continuity of z(-) and u we may take limits and obtain
z(u(y)) =y for all y € B.

Thus u is a homeomorphism of B onto uy(G). This works also for points y € G once we
know that the points are mapped to uo(G) and not to the boundary dug(G). Therefore,
the last step of the proof is to show u : G — uo(G). We do this by contradiction.

The idea is the following: Assume u(z) = yo € Juo(G),z € G. By theorem 2.3 the
connected component of u~'{y,} containing z, intersects the boundary of G. So it is a
stretched-out set. On the other hand, a small ball around y, cannot get too large since
we have a an estimate for the oscillation of the coordinate functions of z().

We begin the proof by choosing a preimage zo € u {yo} N G of yo € Juo(G). Let
d = dist(zy,0G) > 0. The mapping z(-) € WH(uy(G),R**) can be extended to
() € WhHan(yy(G), R*™) since uy(G) is supposed to be a Sobolev extension domain.
The extended mapping is not monotone anymore. But it has a 2n—quasi—continuous rep-
resentative Z(-) € WH?"(uy(G), R*); i.e. T can be redefined on a set of measure zero to a
mapping T such that Z is continuous outside a set of arbitrary small Sobolev 2n-capacity
[14, p. 87]. Let yo = u(zo) and R > 0 such that B(yo, R) C uo(£2). A consequence of
g—quasi—continuity for ¢ > 2n — 1 is that T is continuous on spheres S(y, ) for radii
r € (0, R)\E(R) where the linear measure if E(R) is zero, cf. ([M], p. 396). Further,
collect all radii with B NZ(S(yo, r) Nue(G)) = B into the set F(R) C (0, R). Since B has
full measure and z is measure—preserving in uo(G), the linear measure of F'(R) is zero,
too. Pick a sequence of ”good” radii r, — 0, i.e. 7, € (0, R)\(E(R) U F(R)). We apply
the Sobolev inequality on spheres, also known as Gehring oscillation lemma [10]

(oscs(yoyr)xi)p < Cl(n,p)r”_(2"_1)/ |V;|PdS
S(yo,r)

to the coordinate functions z; of Z for the exponent p = 2n. Dividing both sides by r and
integrating from 0 to R we get

R \2n R
/ (OSCS(yO,r):EZ) d?“ S Cl / (/ |V:Ez|2nds> dT'
0 T 0 S(yo,r)

= C / |Vz;|*"dy < cc.
Br(yo)
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We insert our sequence of good radii 7, and note that there is a subsequence (still denoted
by 7,) such that

lim osc z; =0
N—00 S(y07TTL) )

for some fixed + = 1,...,2n. Namely, if this would be false, the oscillation must be
bounded away from 0, e.g. inf, 0scg(y,,r)Z; = @ > 0. Then the contradiction

R  2n R n
6" osc T;
o0 / -dr S/ ( Staos) Z) dr < oo
o T 0 r

results. By iteratively extracting subsequences we can find a sequence r, — 0 of good
radii such that
nh_)rgo 08C5(yo,rn)Ti = 0

fori =1,...,2n simultaneously. Now take a ball Bs(yo) around the point yy € Juy(G) and
choose a neighbourhood U of ¢ such that U C By4(2) and u(U) C Bs(y)- Let N € N
be such that 7, < 4 for all n > N and oscgy,,r,)T; < d/8 for all 5. For some n > N large
enough, the spherical cap S(yo, ) Nug(G) intersects u(Bgy4(xo)) in a point w. Otherwise
the image of this ball would be disconnected which is impossible by the continuity of w or
it would lie completely in the boundary which contradicts measure-preservation. Denote
by 7o the radius of this sphere with nonempty intersection. We know that Z is continuous
on this sphere.

ug (G)

u(Ba/a(x0))
X

Yo

S(yo, o)
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To derive a contradiction look at the inverse image of the spherical cap S(yo,70) N uo(G)
under Z. Let y; be some point of the boundary of the cap, i.e. y; € S(yo,70) N Aup(G).
Choose a sequence of points a; € Z(S(yo,70) N ug(G)) converging to the point

z1 :=u {1 } NOG € Z(S(yo, 7o) N Oug(G))

on the boundary of G. This point is unique since « is injective on the boundary. Recall
that w is continuous up to the boundary (since, by assumption, u is continuous on an
even bigger domain 2) and thus the sequence by := u(ax) converges to y;. Further,
the mapping T is continuous on the whole sphere S(yo,79) and therefore the sequence
cr := Z(ag) converges to Z(y).

But recall that on ug(G) we know that Z|,,@) = z(-) is the inverse of u|p. This implies
cx = ar and Z(y;) = z;. Now consider the image v := Z(w) of the special point w in
S(yo,70) Nuo(G) Nu(Baa(zo)). We have

|zg — z1| > dist(zo,0G) =d
lzo —v| < df4,

and therefore
|z1 —v| > 3d/4.

But by the choice of n > N we also have
0SCS(yo,ro) Ti < d/8

which implies that zo should be contained in a cube with center z, and side-length d/4, a
contradiction. Therefore it is impossible that a point in the interior of G is mapped onto
the boundary, i.e. u: G = uy(G). O

Corollary 2.7 If the homeomorphism u € W (Q, R?") is symplectic then u™"' is also
symplectic and u=' € WhH(u(Q), Q).

Proof: This follows by exhausting €2 with a sequence of such G,, so that the theorem

can be applied. Since the bound (19) is independent of G, we get the assertion using
Lebesgue dominated convergence. [l
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3 Symplectic Mappings and the Beltrami Equation

Although the theory of quasiregular mappings in higher dimensions appears to be an
excellent generalization of the classical one-dimensional theory of holomorphic functions
in many respects, there is a lack of existence results and constructive methods. The
class of symplectic quasiconformal mappings differs significantly from the whole class of
quasiconformal mappings inasmuch as they fulfill a Beltrami system of equations that is
an exact counterpart of the Beltrami equation in C. The reason for this is the fact the
deviation from conformality expresses at the same time the deviation from being holomor-
phic. This makes it possible to apply the tools of the theory of holomorphic mappings in
several complex variables. In particular, the above-mentioned Beltrami system — subject
to suitable conditions — can be solved. We also address the problem of constructing
symplectic mappings with this method.

3.1 The Beltrami Equation

Throughout this section we consider domains Q;, ¢ = 1,2, in C* = {z,...,2,}. We
shall identify C* with R?" = {z,,...,%n,y1,---, Y} equipped with the standard complex

structure J = Jo : TR*" — TR*", J§ = —id which is given by Jo : 52~ = 52—, 0= > — -

To simplify notations we set X; := % and Y; := a%-' The matrix representation of .Jy in

the basis (X1,...,X,,Y1,...,Y,) is given by the familiar matrix Jy = ( s —1 ) On

the space of 1-forms it is given by J; : dzt — —dy?, dy* — dz. The complex structure is
compatible with the standard symplectic form w =", dz; Ady;; that is, the symmetric,
bilinear form g : TR?" x TR?® — R defined by g(v,w) := w;(Jv,w) is positive definite (for
our choice of J and w it is just the Euclidean scalar product). Usually we work with the
complexified tangent T(}; and cotangent spaces T{€); and extend real objects C-linearly
(only the scalar product g is extended by g(v,w) = w(Jv,w)). The complexified tangent
space Te{); decomposes into a direct sum

T(cQZ' = TI’OQZ' (&%) TO’IQZ' (22)
of the eigenspaces of J,
T = (X —iJX : XeTQY={ZeTc:JZ=1iZ}
T, = {(X+iJX: XeTQ}y={Ze€T8y:JZ=—iZ}

which we call the spaces of holomorphic and anti-holomorphic vectors. A complex basis
of them is given by

1
Zj = E(X]_ZY‘;) j=1,...,TL
_ 1 .
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The complexified cotangent spaces decompose accordingly
with a complex basis given by

de? = dzd +idy’ j=1...,n

dz¥ = di? —idy’.
Next we recall the definition of the complex dilatation y as derived in [22, 23].
Let f: {1 — €2 be a symplectic mapping. The image f.Z; of a holomorphic vector
Z; may be decomposed, according to (22), into f.Z; = V; + W; where V;, W; € T,

This defines a C-antilinear mapping p : T — T mapping V; to W;. Using bases
(Zy,y ..., Zy) of TYOQ and (Z],...,Z!) of T'%Q, we can write

Vi = > miZ,  P=(p)
k=1

Wi = > aiZ, Q= (g)
k=1

The vectors Vi, ..., V, constitute a basis of 7°Q; otherwise there would be a Z € T"°Q,
such that f,Z =0+ W € T%'Q, and the contradiction

0<gW, W) = w(JW, W) =i wW,W)=iw(fZ,fZ)
= i-w(Z 2)=—-9(2,7) <0

would result. Thus there is a C-antilinear mapping p : T5%Q, — TH%Q, such that
Wi=Y nsVe  n=(ng)=P'Q. (23)
s=1

The matrix pu = (u,;) is the complex dilatation of f. The matrices P and ) come from
S1 Sy

the complexification of the derivative matrix S = ( 3. g
3 D4

) of f.; the complexification

Sc of this real symplectic matrix is

_[ P Q 51+ 81 . =52+ 53
SC_(@ ?>’ P=———tt =5

The Cartan decomposition for Sg is

g _ (U O A B U, 0
T\ o U, B A 0 U, )’
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where
cosh t; sinh ¢;

B = )
cosh t,, sinh t,,

A=

and U; € U(n). This implies in particular that py is symmetric:
pr = P7'Q = (U AU,) " (U, BU,) = Uy ' A BU..

. -1 _ pP* —QT _ -1 T
Using S¢ ™ = _Qr PT we also get pp-1 = —U; A7 BU; .

The equations for puy and pp-1 show that the sup-norms ||us-1|| = ||ug|| and, more
important, that the norm ||us|| = max; || tanh ;|| is related to the linear dilatation

) o DI ] = 1)

min{[Df(p)h| : [n| =1}

p € L

of the real mapping f : Q; C R?® — Q, C R?" at a point p. Indeed, the Cartan decom-
position of the real symplectic matrix S is S = U, - diag(e™, ..., e" e ... e7t)Uj.
This implies

H, -1
ot = ] . =
A homeomorphism with [[u]]c < & < 1 is £ —quasiconformal.

The equation f.Z; = V;+ 3 1s;V; is a decoupled system of partial differential equations
for the coordinate functions f: C* — C of f = (f1,..., f): set 9; := a% and J, := ;’75.

Plugging V, = > "p_, 8 f*Z}, and W; = >",_, 0; f*Z], into the definition (23) yields
Oif* = widft  k=1,...,n. (24)
s=1

Remarkably, each of the coordinate functions f* satisfies this Beltrami equation indepen-
dently. The solution of this equation will be achieved by solving the following associated
equation on the space of complex 1-forms:

Oiffd? = pyd.ffd¥  k=1,...,n.

s=1

8
Oz

In this context we think of u as a tensor p = Y. ue;dz’ ®
aff =3, g—gdzs to the (0, 1)-form

sending the (1,0)—form

k._ 2 : >

7,5=1
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and the Beltrami equation can be stated as
off = p-af*. (25)

It is worthwhile to express (24) in real notation: let A be one of the coordinate functions
f*. The complex derivatives of h = u + iv are

_ _ 1 /0u . Ou i (Ov  Ov
hz = (alh,,anh)—§<a—xl+’ba—yl,>+§<a—xl+’l;a—y1,>

1 (0u . Ou i (Ov  Ov

Decomposing also y = M; + tM, into real and imaginary parts and expanding the real
form of (24)
(Re hz +iIm h;) = (M +iMs) (Re h, +iIm h,)

we get a system of 2n real equations:
Re hz _ M1 —M2 Re hz (26)
Imh; | \ My M, Imh, |’

3.2 Solution of the Beltrami Equation

The Beltrami equation (24) can be solved by techniques that are formally very similar to
the ones used in the solution of the classical Beltrami equation in C. Two features however
are peculiar to the higher dimensional situation. The first is the presence of cohomological
obstructions: a O-problem 0f = « is solvable only if o = 0. The second peculiarity is
the Newlander-Nirenberg integrability condition that imposes necessary restrictions on .
We shall proceed as follows: first we discuss shortly the d-problem and the integrability
condition. Then we report the method of Wang [43] where the ideas are clearly visible.
Finally we mention the technically more involved and stronger result of Zhuravlév [46, 47].
The key tool in these proofs are integral representation formulas. Wang uses the formula

a =T (0a) — 0T () (27)

where « is a (sufficiently smooth) differential form of type (0,1) and 77,7 are certain
integral operators. Formally, if 0o = 0 then F' := —T(c) solves OF = « since OF =
—0T(a) = e — T1(0c) = . Similarly, Zhuravlév defines operators I,11, S on the space
LY* of (0,1)-forms with LP-coefficients that satisfy

Ola = Tlw 0la = Sa.

The singular integral operators IT : LO>* — L%, S : Lyt — L)' are continuous. Again, if
Oa = 0, then F := I« solves OF = «.

29



Formula (27) is a particular case of the Bochner-Martinelli-Koppelmann integral formula;
for general results of this type see the monograph [25] and [36].
The integrability condition

n

5jﬂsk - 5k,usj = Z (,urjar,usk - ,urkar,usj) j7 k: s = 17 <N (28)

r=1

is a set of necessary conditions for the existence of 2n linearly independent solutions of
(24), provided p is sufficiently smooth [33]. With the notation from [43] that we adopted
in equation (25), the integrability condition can be written as

o = pdp.

Yet another formulation is useful [45]: the complex dilatation u, satisfying the integrability
condition, defines a new complex structure with associated derivatives ,0, ,0.

Denote n
,LLS — Z 'usjdzj
J

and take a (p, ¢)-form a € T, ,Q;. Define ,0: T, Q1 — T, 411 as
w0 = 0 — Z,us A Os.

Then the integrability condition takes the form

Applying the new derivative to a function f* gives
WO =" (5]. Frde = pgida A6, fk)
j=1 s=1

and the Beltrami equation reads B
LOfF =0.

Thus, solutions of it are holomorphic functions with respect to the new complex structure
induced by pu.

We give now a formal sketch of the solution of (24). Suppose y is sufficiently smooth and
small in magnitude. Consider the auxiliary fixed-point equations

F = —0T(uF) + dz*, F=Zaidzi, k=1,...,n. (29)
i=1
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The operator 0T i is contracting in a suitable Banach space and hence each equation has
a unique solution Fj. Starting from the Bochner-Martinelli-Koppelmann formula

pFy, = Ty (0(uFy)) — OT (uFy),

using the fact that Fj, solve (29) and in an essential way the integrability condition it can
be calculated [43] that ) )
O(uFy) = pOT1(0(pFy))-

The operator 0T is again contractive and d(uFy) = 0 follows. Then the functions
f* = —T(uFy) + 2*
are solutions of the Beltrami equation. Indeed

0ff = —0T(uFy) = pF — Ti(O(uFy)) = pFi
off = —OT(uFy) +d* = F.

The solution method of [46] works even for non-smooth y: let A, denote the norm of the
continuous operator IT : L)' — L. Suppose p > > 1 and ¢ = pr/(p —r).
The conditions on y are

(a) pe LP(C);

(b) [lullectp < 1 and [|ullschr < 1/2v/n —1;
(c) O;pse € L(C*) N LT(C) (G, k,s=1,...,n);
(d) Ojusk € LP(C™) (G, k,s=1,...,n);

(e) the derivatives of ;s are in LI(C*) N L"(C*) (G, k,s=1,...,n).

Theorem 3.1 Let p > r > 2n. Suppose conditions (a)—(e) hold. Then there exists a
unique homeomorphic mapping f : C* — C" in I/Vllof((C") that solves (24) and satisfies

f(0) =0, f(2) =2+ 027 as 2z = co.

The derivatives O, f* are bounded and 8, f¥ — 8,5 € LP. The second derivatives of f* are
wn LT,

The symbol &, is the Kronecker delta function. Condition (e) on the second derivatives
of p1 is only needed to show that the Jacobian determinant Jf of f is a solution of a special
differential equation which then implies J¢ > 0. Moreover, the assumption p > r > 2n is
not necessary for the construction of the solution; it is used to show continuity and the
growth estimate. In fact, the solutions enjoy a better regularity (section 3.4).
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3.3 On Symplectic Solutions

The solution of the Beltrami system that was constructed in the last section is only
one particular solution among all solutions. Indeed, suppose u is such that the theorem
asserts a homeomorphic solution. Then any solution f admits a Stoilow type factorization
f = g o h where h is a homeomorphic solution and g = (¢', ..., ¢*") is holomorphic. For
this it is enough to note [46] that the functions ¢ = fioh~! satisfy dg* = 0. In particular,
if ® is a (homeomorphic) symplectic solution, then ® = g o h with g biholomorphic.

Of course, we would like to construct the symplectic mapping ® itself from a given u. For
this we have to

P P

. . 7
1. construct a symplectic matrix ( Pn P ) from p,

2. modify the solution method such that the solution satisfies 9;®* = P;;.

The linear algebra task 1) is not difficult.

Lemma 3.2 Let p € M,(C) be symmetric and suppose for the sup-norm ||u|| < 1. Then
there exists a symplectic matriz with complex dilatation .

Proof: A real matrix S is symplectic if and only if its complexification S¢ = ( g % )
satisfies

(I) PP*—QQ*=1 (III) P'P-Q'Q=1I

(II) —-PQ"+QP"=0 (IV) P*Q-Q"P=0.

By definition @ = Pu. Equation (II) is always satisfied because p = u”. Equation (I)
gives a candidate for P:

PP*— PuP* =P (I — yu@) P* = I
(I—um) = (PP)"
PP = (I—pup " .
The operator (I — pfi)”" is hermitian since (ufi)* = pfi. Therefore it is diagonalizable

and its eigenvalues are real. Furthermore the operator is positive since ||u|| < 1 implies
that all eigenvalues of I — i are positive. Now we define P as the unique square root of

this positive operator,
Pi=/(I-up)"

The uniqueness of the square root and (P*)* = (P*)" = [(I — pp)~']* = (I — up)~' = P?
imply P* = P or PT = P. Equation (I) follows. For (IIT) note P*P = P*> = (I — up)™"
and QTQ = uPTPp. Then (III) is equivalent to
Q'Q = (I-up) ' —1
& (I —pp) pP"Pp = I—(I— pup) = pi
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Calculating using von Neumann series

pP™P = pP? = (I — pp)~" = p (I + Bp+ Bupp+ ...
= (I +pp+ pppi+...) p

= (I—pm) " n (30)
we see that (IIT) holds. For the last equation use P*Q = PQ = P?u = (I — up) 'p,
QTP =QTPT = (PQ)T = (P*u)T = ,uﬁ2 and apply again (30). O

It is not clear that the Beltrami system is solvable with the particular P from the lemma;
we cannot expect that the necessary integrability condition is satisfied. But the lemma
shows at least that there are no algebraic obstructions. Generally, it is possible to get
solutions with suitable prescribed derivatives. For example, we could replace the fixed-
point equation

Fp = —0T (uFy) + d2"
by

P, = =0T (uP;) + of
where o are exact (1,0)-forms. We can solve this for o = (I + 0T u)P;. Let us assume
that da* = 0; then d(uP;) = 0 follows again. Set f¥* = —T(uP;) + B¢ where 3, satisfies
0B% = 0 and 88, = a. Then f = (f,..., f*) would indeed be the desired solution

off = —0T(uP) — T (0uP,) = pb;

The symmetry of u is a consequence of the J-invariance of the symplectic form [22].
Vice versa, we have

Proposition 3.3 If the diffeomorphism f € C*®(Q,R?*") has a symmetric complex di-
latation then there exists a J-invariant symplectic form o such that f*a = w.

Proof: We define e by o = (f~')*w. Take vector fields V = X —iJX and W =Y —4iJY
in 7%, The mapping f maps the vector fields V — uV and W — uW into T [22].
Then

FraV—pV,W—uW) = a(fV—pV), fi(W - puW)) = o(V,W)
= w(v_:u—V7W_:u—W)
= w(V,V) —w(V, W) - w(V,uW) + w(uV, uW)
0

where the symmetry was used in the last line. Thus,

VW) = 0 VYW, WeT™
a(V,W) =
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and J-invariance follows from
a(V,W)=a(X,Y) —a(JX,JY) —i [a(JX,Y) — a(X,JY)] = 0.

Moreover da = d(f~')*w = (f~')*dw = 0 and the non-degeneracy a A --- A o # 0 follows
from f*(aN---ANa)=wA---Aw#0. O

3.4 Higher Regularity

The solutions of the Beltrami equation that were constructed above are K-quasiregular
for some K. Therefore they are “higher integrable”: there are constants ¢ = ¢(K) < 2n
and p = p(K) > 2n such that any K-quasiregular solution f € Wh4(Q2, R?") actually
belongs to f € WHP(2, R?™), cf. [17]. In fact the gain of regularity is much bigger: the
unexpected possibility to treat the decoupled Beltrami system with the -techniques leads
to higher regularity already for exponents ¢ close to 2. To prove this, take a coordinate
function h = f¥: C* — C, h = u+iv of a W,o4(C*, C*)-solution of (24) and associate to
it a pair of vector fields F = [B, E]. We will show that F is a so-called K-quasiharmonic
field or a div-curl couple with bounded distortion. These terms were coined by Iwaniec
and Sbordone in [18, 19].

We define two real vector fields by

ou ou Ou ou

3_1) ov _av ov
o0 g om 0w )

B = JVU=<

Clearly,

curl ¥ = curl Vu=0
" 0%

div il Ox;0y;  Oy;0x;

0.

The complex structure J can also be interpretated as a matrix representation of the
Hodge #-operator which transforms curl-free vector fields to div-free vector fields (or
closed differential forms to co-closed ones). A pair F = [B, E] with div B =0, curl E =0
is called a div-curl couple. The F+-component and the F~-component of F are defined

as
1 1
Fi=5(E~B) F'=_(B+E).

We relate the components of the coordinate function h = u+iv solving (24) to its complex
derivatives: from
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Rehz=%<aa—;tl,.. ,;—;)—%(5—;,. ,aa—;; =%(E_B)?—1

Im hs =3 (g—;,...,g—;> 3 (a% ,;:n = (BB,
Re h, =% (%ul ,%)Jr%(a—;l, -,;);n =%(E+B)7—1
e (2 ) (2 ),

we get
— [ Reh; o Re h,
'7:_<Imh5>’ '7:_<—Imhz>'

Equation (26) translates to a Beltrami equation for F,

_ . N M, +M:
F _ . Ft — 1 2
Let ||ullo = k = £57 < 1. Since ||plloo = [|filloo We get K = —Hgnzj} Thus, in the

terminology of [19], the pair F is a K-quasiharmonic field. The gain of regularity for the
vector fields of such a pair is remarkable:

Theorem 3.4 [19, thm. 2]
Let a Holder conjugate pair ¢ < 2 < p be given by

14K —12

4K - 12
1= 7K 5

and = ——— K> 1.

p TK—7 2
Then every K -quasiharmonic pair of vector fields in LY (Q,R?™ x R*™) actually belongs
to LY (Q,R*™ x R?").
Note that ¢ — 1 and p — o0 as K — 1. Quasiharmonic fields with K = 1 correspond
to a single vector field £ = B which is harmonic since curl £ = div £ = 0. Therefore
it is smooth according to Weyl’s lemma. This theorem in conjunction with theorem
3.1 shows that there are effective tools to construct solutions of the Beltrami equation.
Unfortunately it is not clear if it is always possible to find a symplectic solution.
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4 Symplectic Mappings and Exterior Algebra

4.1 Exterior Powers of Vectors and Mappings

The I-th exterior power AY(V) of a vector space V is characterized by the following uni-
versal property: any alternating multilinear mapping of [ variables f : V x - xV — W
to some vector space W factors through AY(V); there is a linear mapping ¢ : AY(V) — W
such that

Vxx V—Lew

re

<

re

N (V)

i

is commutative. The mapping i is the natural inclusion (v, ...,v;) = v A---Av;. Choose
a basis (b',...,b") of V. Then a basis of A'(V) is given by (') where the multiindex
I = (i1,...,%),1 <ip <ig--- < i < n runs over all ordered [-tuples in lexicographical
order. We call this the standard basis of AY(V). Thus, dimension of AY(V) is (7}). Later,
it will be convenient to allow complex coefficients, but for now all vector spaces are real.
Now let f : V — V be a linear mapping, given with regard to the basis (b',...,0") by
the matrix A = (a;;) . Then the mapping V x - -+ x V. — AY(V) given by

(V1,...,0) = Avyp A -+ A Ay

is multilinear and alternating and therefore, by the universal property of A'(V), must
factor through AY(V). The induced linear mapping A!(f) : AH(V) — A{V) given in
matrix form for monomials as

Ag(vi A Ayp) == Aug A=+ A Ay
is the [-th exterior power of A. For an ordered I-tuple J = (ji,...,J;) we have

Au(b7) = AP A AV A - N AV
#

= (i ailjlbi1> A A (i ai,jlbil>

i1=1 =1
== E AIJbI
I

where Ajy is the determinant of the [ x [-minor of A obtained by deleting all i-th rows
with ¢ ¢ I and all j-th columns with j ¢ J. The mapping Ay is given by the (’l‘) X (’l‘)
matrix of [ x [-minors: Ay = (A7) .
A bilinear form g extends in a natural way to a bilinear form gy on AY(V): for monomials
bl =" A+ ABY and b7 =BT A - A B set

g(b',b7) = det(g(b%, b)) (32)

and extend g bilinearly to all of AY(V).
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Lemma 4.1 The following rules apply:
1. (AB)y = AyBy
2. (A )y = (Ayp)™' = AL if A is invertible
3. (AT)y = (Ag)T = A}
4. Ag(w Am) = (Apw) A (Ayn)
If A is symmetric, orthogonal, diagonal or invertible, then Ay has the same property.

See [17, 27] for more calculations.

4.2 Exterior Powers of Symplectic Mappings

Let A : R*™ — R?" be a symplectic linear mapping. It satisfies

T oA _ -1
waams =, )

For Ay : A(R?") — A!(R?™) the functorial properties imply
ALJypAy = Jy
and therefore A4 preserves the bilinear form associated to Jy. Because of
T

we know that Jy is invertible and describes a non-degenerate bilinear form. The equation
above shows that J. is orthogonal; but for even [ it is not symplectic anymore since
skew-symmetry of .J,

goes over to

Example. A?(R*)

Let V = R* with the standard basis (e', €2, €3, e?). We calculate Jy = A2(J).

Obviously Je! = €3, Je? = e') Je* = —e!, Je! = —e?. The standard basis of A%(R?) is
(e' Netet Aedel Aetie? Aede? Aetied Aet). Since | = 2, Ju will be symmetric. A
calculation gives (note: Jye' Ae®* = Je' AJe® =€ A (—e') =e' Aed)
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This symmetric matrix (and the associated bilinear form) is orthogonalizable: choose a
new basis (w?) with

1
1 1 2 3 4
w = —(e ANe“+e’Ae
\/5( )
w? = etnel
1
3 1 4 2 3
w® = —(e ANe*+e“Ae
\/5( )
wt = e2Anet
1
5 1 2 3 4
w = —(e Ne“"—e’ Ae
\/5( )
1
w® = ——(e'Aet— e Aed).

S

The orthogonal matrix of the change of base is

1 1
(ﬁoooﬁo\
01 0 0 0 0
oo %0 o L
M= P2 Vi
0 0 55 0 0 .
00 0 1 0 0
1 1
\d0 00— o)
and we get
1
1
1
MTJuM = )
—1

-1

Let us discuss the example A%(R*) further.
The symmetric bilinear form represented by Jyu is of type (4,2). We can decompose
A%(R") into subspaces

A2(R4) =VteV" vVt = Span{wl, w? w3, w4} V™ = Span{w5, w6} (33)

on which Jy is positive and negative definite (these are the eigenspaces of the linear
operator J4). This decomposition is not invariant under symplectic maps. The Cartan
decomposition A = U; DU, of A gives Ay = Uy DUy where Dy is still diagonal and
Uiy are unitary,
ULJuUy = Ju (34)
T
UuUp = I (35)
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Equation (34) just expresses the invariance of the bilinear form Jx under U;x. Suppose v
and w are the coordinates of a vector relative to the standard basis. Then

(U#’U)TJ#(U#’LU) = ’UTU#J#U#’U = ’UTJ#’LU.

Equations (34) and (35) together give UgpJy = JxU;s. Therefore Uy preserves the
eigenspaces of Jy. This allows us to decompose Uy = U} & U? into U} € GI(VT),
U2 € GI(V™),i=1,2, and we have

vt o \"/U o\ _[(UTU: o0 (I 0
0 UZ o u2)" o uXyr)~\o 1)

Therefore in fact Uy € O(4) @ O(2) with determinant 1.
Since Dy does not commute with J, it does not preserve the decomposition. From
D = diag(Ai, M2, A\TH, A5 1) we get

A9
1
ALY
AT Ao
1
(A1Ag) 7

We have not yet used the equation A*wy = wy in the dual space A/(R*) of 2-forms;
wo = de' Ade3 +de? Ade? is the standard symplectic form. Using the duality isomorphism
R* — R*, de’ — €?, and taking exterior powers we get

Ag(et A +e2net) =e' A +e2 el

(the matrix Ay is the transpose of A*). Make a orthogonal coordinate change N on V'
so that vy := 1/v/2(e! A €® + €2 A e*) is the first basis vector. Then the first column of
fl# = NTA,4N becomes (1,0,0,0,0,0). Since the transpose of a symplectic matrix 4 is
symplectic too, the first row of Ay is also (1,0,0,0,0,0). Hence

()

and Ujx take the form
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4.3 A symplectic Hodge Operator

Many of the results of [17] are centered around Hodge theory and the related opera-
tors. For instance, the non-conformality of a mapping is detected in the distortion of the
eigenspace decomposition of the Hodge x—operator. This led to the question whether there
is a symplectic analogue. The usual *—operator is defined with the aid of a non-degenerate
bilinear form (the Riemannian metric); this construction can be imitated with the sym-
plectic form. The following presentation of the symplectic Hodge operator is mainly taken
from [5].

Let (V,w) be a 2n-dimensional symplectic vector space with basis (b',...,5*"). The sym-
plectic form is a non-degenerate bilinear form and defines therefore a duality isomorphism
U : V* = V such that

w(v, ¥(a)) = a(v) YoeV,ae V™.
This isomorphism extends to an isomorphism
A?(T) : A2(V*) = A%(V).
The antisymmetric tensor
G = — N (¥)(w)
can be interpretated as antisymmetric bilinear form
G:V*xV* >R

Its exterior powers AFG : AF(V*) x AF(V*) — R are (—1)*-symmetric.

Example. Consider R*® = {(z1...,Zn,¥1---,Ys)} with standard basis (e!,...,e*")
and standard symplectic form wy = Y i, da* A dy’. Then ¥(dy’) = —e', U(dz’) = e"*
because of

; 1 v=dy
n+i —
w (e ,\Il(v))—{o vt dy
With . . . . . .
AU (dz’ Ady') = e A (=€) = et Ae™t!
we get

n
G = g "N €.
i=1

Thus formally G is the negative of the dual of wy. But logically, the bilinear mapping G
should be distinguished from the bivector e! A €® + €2 A e* € A?(R?).
O

The symplectic Hodge operator %, on forms is now given by the condition

BA(x,0) = AFG(B,0)-Voly VB e AF(V?)
g /\k(V*) — /\2"_k(V*).
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where the volume form Voly is defined as Voly := # A w.
By duality, we can transfer it to A¥(V') where it is given by (Vol}, := 5 Al G)

wA (x,0) = AFw(w,v) - Vol
%, AF(V) = AR,

Lemma 4.2 [5]
1. For a € NF(V*) we have *,(*,0) = a.
2. For a, 8 € N*(V*) we have B A (x,a) = (=D)Fa A (x,0).

We reformulate our considerations in the context of symplectic manifolds. For the more
general case of Poisson manifolds see [5], [44]. So let (M,w) be a smooth symplectic
manifold of dimension 2n. We already know (G, the antisymmetric tensor of order 2, and
the bundle isomorphism ¥ : 7*M — T'M. The pairing

G:T*M xT*M — C*(M)
extends to
AFG  QF (M) x QF (M) — C=(M).

where QF(M) = AF(T*M) is the space of smooth differential k-forms. The symplectic
x-operator on differential forms is given by

BA (x,0) = AFG(B,a)- Voly
%, QF(M) — Q" F(M)
and lemma 4.2 holds. In the general context of Poisson manifolds we can compare the
*,~operator with the Koszul differential § : QF (M) — QF~!(M) which is similar to the cod-
ifferential. They are linked by the formula § = (—1)**! %, dx, on QF(M). For comparing
*, with the usual Hodge *-operator we confine ourselves to the case of Kihler manifolds.
So let M be a complex n-dimensional manifold with hermitian metric h = g + 4 - w. The

imaginary part is given by a non-degenerate real 2-form w which is symplectic since M is
Kéhler. The real part g is a Riemannian metric and comes with the usual x-operator

BA (k0) = /\kg_l(,B, a) - Vol, Vol, = Vol
xg 1 QF(M) — Q2R (M).

-1

Here g~' denotes the dual of g (the matrix representation of g~! in the dual basis is the

inverse of g). It satisfies
97" (B, ) = g(2(B), ®(a))

with the duality isomorphism

&:T"M —» TM
a(v) = gv,®(a)) YveTM,aceT*M.
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The operators *,and %, agree up to powers of i on complex forms of bidegree (p, q):
Theorem 4.3 [5] For a € QP4(M) we have
k00 =P x4 .

Example. @ We calculate the symplectic Hodge operator %, related to the standard
symplectic form w, on the 6-dimensional space of 2-forms on R*:

%, 1 A2(R™) — AZ(R™).

Since the above mapping is idempotent (*,%, = I), the space A?(R*) decomposes as a
direct sum of its eigenspaces to eigenvalues +1 and —1

AR = AT @A, (36)
where
A} = {a e N2(R?) : x,0 = a}
is the space of self-dual forms and
A, = {a € NP(R*) : x,a = —a}

is the space of anti-self-dual forms.

The calculation of the action of %, on 2-forms is simplified by the fact that locally a
symplectic manifolds always looks like a product of symplectic manifolds ([5, p. 100]):
if (M?™ w,) and (M?"2 w,) are symplectic manifolds and «; € A¥(M;) are given, then
a1 A ag € AFFR2 (M x Ms) and

*w(al A 042) = (_1)k1k2(*ma1) A (*W2a2) = (*W2a2) A (*mal)
where w = w; + wy. For dim(M) = 2 and w = dz A dy the following rules hold:

x,f = fdrAdy feC=(M)
xo0 = —a  «a€QY(M)
xo(fdz ANdy) = f feC®(M).

We decompose (RY,wp) = (R%, dzt A dy') x (R?,dz? A dy?) and calculate the effect on
2-forms. We use the abbreviations *; = x,,, and w; = dz® A dy’.

*,(det Ady?) = (xady®) A (%1dz") = (—=dy?®) A (—dz') = —dz' A dy?
*,(det Adz?) = (x2dz®) A (x1dz") = (=dz®) A (=dz') = —dz' A do?
s,(dz' Ady') = x,((dz' Ady') A1) = (%21) A (x1(dz’ Ady')) = we - 1 = da® A dy?
*,(de® Ady?) = *,(1LA (dz® Ady?)) = (x2(dz® Ady?)) A (%11) = 1wy = dz' A dy'
%, (dy* A dz?) (%2dz?) A (%1dy?) = (—dz?) A (=dy') = —dy" A d2?
%, (dy" A dy?) (%2dy®) A (x1dy") = (—=dy?) A (—=dy') = —dy" A dy?



The eigenspaces are therefore (Jg := dz!' A dy' — dz? A dy?)
NS = {da' Ady' + dz? A dy?) = (wo) (37)
A, = (Wo,dz' Ada?, dy* Ady?, da' Ady?, dy' Ada?). (38)
We check the claim *,(dz! A dy') = dz? A dy? using the definition of the symplectic star

operator. First we calculate A2G(8, a) for a = a1 A ag, a1 = dz', ap = dy', 8 = 51 A o,
B; = Bldz! + B2dz? + B3dy' + Bidy?. Using the results of the previous example,

G(Bi,on) = G(Bi,da')=€*(5) -1=0;
G(Bon) = —€e'(B)-1=—-0;
we get
2 P8 1.3 _ pl. 33
A2G (B, ) = det s gl =Py By — By By
Compare this with
BA(deE Ady?) = (Bl + Bida? + Bdy' + Fldy?) A (Bhda' + B2da? + Fidy' + Bldy?) A
Adz? A dy?
= (Bida' + Bldy') A (Badz' + B3dy') Adz® A dy?
= (B85~ By BY) - da' Ady' A da® A dy.
This agrees with the definition g A (x,0) = A?G(S, o) o502, O
Lemma 4.4 Let A:R?*™ — R*™. Then
1. Nowg(Apv, w) = Nwg(v, JLAL Jaw) v,w € AFR?"
2. N*G(A*a, B) = A*Gla, J* AT T TB)  «, B € NF(R*™)

Proof: For 1) take v =v; A---Avg and w = w; A -+ Awy in AP(R?"). The statement
follows from

wo(Avy, wj) = (Avy, Jw;) = (v;, ATJw;) = wo vy, JT AT Jw;)
and definition (32):
Nowo(Ayv, w) = det(wo(Avi, w))i;) = Awo(v, JLAL Jypw).

For 2), which is the dual to 1), note that the usual pull-back A*« of a form « is described
in the dual basis by the transpose of A. In particular, J*dz® = —dy?, J*dy' = dz’. In
our notation A* = Aﬁ. We reserve the #notation for the induced mapping on vectors
and the xmnotation for the forms. Take k-forms o = a; A--- Aoy, B =01 A+ A B in
AF(R*™). Verify
G(A*ai,,@j) = <A*C¥Z', J*T,Bj> = <C¥Z',A*TJ*T,6]'>
= Goy, J*ATTTB;) = Glay, (JTATT)*B;).
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Lemma 4.5 For any matriz A € GI(R*")
TR AL Ty %o Ay = (detA)x, : NF(R™) — A 7F(R?™). (39)

Proof: 1) Choose @ € AFR*™, 8 € AZ""FR?". Using the previous lemma and *,%, = [
we compute

Nowqy (B, JLAL Ty % Apa) - Voljon = Afwo(Aypf, *,Apa) - Volga,
= AuB A%, x, Apa
= AuB N Ay *, ko = Ag(B N *, %, @)
Ay NF w8, %) - Volgen
(det A) AF wo(B, *,0) - Volken

The relation Jj A} Jy*, = (detA)x, follows since AFwy is non-degenerate. O

Corollary 4.6 The decomposition NF(R*™) = AL @ A, is invariant under symplectic
mappings.

Proof: If A is symplectic, then Jj AL Jy = A;. Lemma, 4.5 gives A; %y Ay = *,,, or
equivalently Ax, = *x,A. The claim follows. [l
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4.4 Decompositions of A(R?)

We have already taken note of the decomposition of A%(R"™) into eigenspaces of the
symplectic *,—operator (36-38)

N (R™) = A @ A, = (wo) ® (o, dz' A dz?®, dy' Ady®, dz' Ady?, dy' Ada®).

We shall introduce two more decompositions. Namely, into eigenspaces of the Euclidean
Hodge *—operator and also into eigenspaces of Jy = A?(J). All these operators have
eigenvalues +1 and —1. Qur aim is to compare the decompositions and to derive a
Beltrami equation relative to Jy. It will be easier to work with the complexified spaces
AL(R*) and AZ(R*). In complex notation we have

wo = %.(dz1 Adzt + d2® A dZ?), &y = %(dz1 Adz' — d2? A dZ?)
and

AL(R*™) = (wy) ® (@0, dz" N d2?,dz" AdZ*,d2" NdZ',dZ" N dZ?). (40)
The real Hodge decomposition AZ(R*) = AT ® A~ = {a + *xa} & {a — *a} is

AT = {da' Nd2? + dy' Ady?,dzt Ady' — dz® Ady?, dat Ady? + de® A dy')

AT = <d:151 Adz? — dyt Ady?, dat A dyt + do® A dy?, dat A dy? — da® A dy1> .
With dzf Adz? = dzt Adz? — dy? Ady? +i(dz? Ady’ — dz? Adz?) and d2* AdZ = —2idz’ Ady
we get

AL(R™) = ATOA = <dz1 Adz2 dzt A dz2,<IJO> &) <dz1 Ad2?,dzt A d22,w0>

At @ Ay D (wo)
where A, = (dz' A d2?,dz' A dZ?).
Decomposing A% (R*) = AT @ A7 relative to Jy is just sorting according to complex type
Tpq (since Jdz7 = id2’ and Jdz7 = —idz?):
/\}_ = {CV + J#CV} = T171 = /\+ S <w0> (41)
Ay = o= Jyat =T ® Top =Ny

With the help of the standard dualization 2! — dz*,z' — dz' we decompose AZ(R*)
accordingly (with the same notations); for instance

/\+ == <Z1/\72,71/\Z2,Z1/\71 _Z2A72>
N = <Z1 N ZQ,ZI N 72> = T2’0 (&%) T0’2.

red
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A linear symplectic mapping satisfies A*wy = wo and Axvy = vy where vy := %(Zl ANZi+
Zy N Zy) is the dual of the symplectic form wy. Corollary 4.6 and (37), (41) show that
(vo) and its complement AT @ T, @ Ty = AT DA, are invariant (see also the reasoning
at the end of section 4.2). Thus we can split off (vy) and look at

Ay i ANTOA 2 ANTDA
This decomposition is invariant under holomorphic mappings. For general symplectic
mappings the distortion of the spaces is measured by a mapping v : AT — A, which we
shall now describe.
Apply the definition of the complex dilatation u to f. : At — AT @ A_, and decompose
the image of AT:

fZiNZ) = (V;+WZ~)/\(V]~+W]~)=(WAVjJFE/\EVj)Jr(W/\WjJrWi/\Vj)
= (VinV;+pViApVy)+ Vi AV +pV; A V).

With the R-linear operators (c is complex conjugation)

IQuoc : ZNZ'— ZAuZ'
cou®I : ZNZ'— puZNZ
cop@uoc : ZNZ' v puZ \pZz'

we write
ZinZ) =T +cop@puoc)V;AV,+(I®puoc+cou® VAV,

The second vector above is of pure type (2,0) or (0,2) and thus is in A__,;. The first vector
is in A™T; since we sorted according to complex type it lies a priori in the 4-dimensional
space ALl of vectors with mixed type. But it does not contain any component in the
invariant direction (vo) = (Z1 A Z1 + Z» A Z2) and so it is contained in the 3-dimensional
subspace AT C T ;.

The projection mx-,.4 can be calculated from the projection w,+ since the operator

I+ cop® cofiis invertible because of ||u|| < 1. In this way we arrive at the following
Beltrami-like equation with a “complex dilation” v : AT — A__

Tp-, 0 fev = w(ma+ 0 fiv) veAt
IQuoc+cou®l
v = :
I+cou®@uoc

The notation as a fraction is unambiguous since the operators commute.
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