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Fourier/Harmonic Analysis-An Example with Tides 

The goal of this section is to provide a concrete example of the Fourier transform and the spectrum of 

a signal. We will show how the transform data can be used to both understand and exploit the 

periodic, sinusoidal content of a signal. Specifically, we will look at the problem of predicting the tides 

by focusing on data collected at the southern end of Manhattan. 

 

Figure 4 The star on the charlet shows the position of the tidal 

measurement station which collected the data for this example. This 

southern part of Manhattan is called The Battery. Image courtesy of 

the National Oceanic and Atmospheric Administration (NOAA), U.S. 

Department of Commerce 
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We learn in our basic science course 

that the rise and fall of the ocean tides 

is cause by the gravitational pull of the 

moon and the sun, interacting with the 

rotation of the earth, with (generally) 

about two high tides and two low tides 

each day (two full cycles). 

In 1867, William Thompson (Lord 

Kelvin) proposed a method for 

predicting tides that represented the 

height of tide based as a sum of 

sinusoids. Choosing the appropriate 

terms to use in that representation is 

equivalent to identifying the peaks in 

amplitude of the Fourier transform. 

Let h(t) be the height of tide, measured 

at some reference point. Since we are 

interested in understanding the 

oscillatory motion, we subtract off the 

mean height of tide to find signal 

x(t) = h(t) — havg (3) 

Then we can compute the associated Fourier transform x(f). (In fact, because our computation is 

based on data, we have to use discrete techniques. We will describe those techniques in the section 

on The Discrete Fourier Transform (DFT).) In the context of tides, the input variable (frequency) is 

usually measured in degrees per hour (deg/hr) which gives an angular speed, usually just called 

speed. Note that a speed of 15 (deg) would be equivalent to 360 (deg/day) or one cycle per day. 

Using data from the National Oceanic and Atmospheric Administration (NOAA), we selected 

about 44 months worth of hourly readings and found the resulted Fourier transform data, shown in 

Figure 6. In the upper panel, we plot amplitude vs. speed over a wide range. The larger the peak, the 

more significant that frequency is to the overall signal. The peaks near 30 deg/hr are reflecting that the 

tide has two cycles per day. The peaks near 15 deg/hr are associated with once per day, which results 

in one of the two high tides during the day being significantly higher than the other. 

 

 

Figure 5 Height of tide as measured at The Battery - the 

southern end of Manhattan. The measurements were taken 

at one hour intervals. The graphs shows the normal 

semidiurnal tide pattern, with one tide cycle taking about 12 

hours. 

(image courtesy of NOAA) 
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Figure 6 Fourier Transform of tidal data from The Battery - Amplitude vs. Speed. 

(Upper) For speeds 0-100. The higher the amplitude, the more significant the 

contribution to the tides. (Lower) Zoomed to speeds near 30 (deg/hour). 

(image courtesy of NOAA) 

 
 

Near 30 deg/hr, we actually see three peaks, better indicated on the zoomed in picture of the lower 

graph. The peak at 30.0 (labeled S2) is associated with the solar (S) affect on the twice-daily tide 

(hence the subscript 2). However, the major peak, labeled M2 is from the moon, which has the largest 

effect on tides. Because the moon is moving relative to the earth, the earth has to turn a little bit extra 

to catch up to the moon’s position, which takes about 24.84 hours (vice 24 hours for the sun), giving a 

smaller speed of about 28.98 deg/hr. Because the moon’s orbit is an ellipse (almost) with the earth at 

one focus, the moon is not always at a constant distance from the earth. The N2 component accounts 

for this effect. 

To predict the tides, NOAA uses the 37 most significant frequencies from the Fourier analysis, all of 

which are associated with these astronomical effects. The speeds (frequencies) of these effects are 

essentially the same everywhere, because the relative motions of the earth, moon, and sun are 

unchanging. However, location to location, the amplitudes and phases of each must be determined to 

be able to compute a predicted tide. That predicted tide is like doing the Inverse Fourier Transform 

(IFT), but only approximately, since only 37 sinusoidal terms are used. To perform that computation, 

we really need a computer. Before the advent of the digital computer, this was accomplished using a 

mechanical computer. The machine build to do the tidal problem is called the Tide Prediction Machine 

(TPM). From 1910 to 1965, the United States used Tide Predicting Machine Number 2, a 2,500 pound 

computer that used pulleys and gears to compute the sum of the sinusoidal terms, and was also able 

to determine the times of highs and lows, and drew a graph of the predicted tides. 

 

Figure 7 Tide Prediction Machine 2  

(Photo courtesy of NOAA) 

  



 

Figure 8 TPM Number 2. Note the graph being mechanically 

drawn. 

(Photo courtesy of NOAA) 

 
 

Most of the information on the history of harmonic methods for predicting the tides is taken from the 

NOAA website, a great resource for additional information. For a detailed description, the interested 

reader can peruse 

UNDERSTANDING TIDES, by Steacy Dopp Hicks, Physical Oceanographer 

 

http://www.co-ops.nos.noaa.gov/publications/Understanding_Tides_by_Steacy_finalFINAL11_30.pdf

