Zusatzaufgaben zu Spektralanalyse (Kap. 8.8)

Aufgabe 1:

Du hast ein 2 Signale/Töne zur Analyse erhalten. Führe für jeden Ton folgende Schritte durch und skizziere jeweils die Ergebnisse auf die Zettel.

Jede Gruppe stellt nach der Analyse der Klasse ein Signal vor.

- a) Höre den Ton an und notiere, wie es sich anhört und ob etwas speziell auffällt. Ideen für Fragen, die du dir stellen kannst:
 - ist es ein Instrument oder etwas künstliches?
 - ist es ein «schöner Ton» oder unangenehm?
 - ändert der Ton oder ist er immer gleich?
- b) Zeige die Kurvenform an. Je nach Ton muss man in «hineinzoomen», damit man etwas Interessantes sieht.
- c) Führe die Spektralanalyse durch. Worauf du achten solltest:
 - welche Frequenzen kommen im Spektrum vor?
 - Sind es nur wenige, ein paar oder sehr viele?
 - wie stark sind die Obertöne (Amplitude) ungefähr?
 - Bei Nr. 1-6: erkennst du die Frequenzen aus der Aufgabe wieder? Hast du eine Erklärung dafür?

Die Programme dazu und die Audiodateien sind im im **Austauschordner 19MB\AM\Fourier**.

Künstliche / selbstdefinierte Funktionen

- a) und b) Kurvenform anzeigen mit künstliche-abspielen-und-anzeigen.py
- c) Analysieren mit fft-künstlicheTöne.py

Im Programm muss man nur die richtige Zeile auskommentieren.

Nr.	Funktion		
1	samples[i] = sine(A, 4000, t) + sine(A/2, 3000, t)		
2	samples[i] = sine(A, 4000, t) + sine(A, 3990, t)		
3	samples[i] = triangle(A, 1000, t)		
4	samples[i] = sawtooth(A, 1000, t)		
5	samples[i] = sine(100, 4000, t) * sine(100, 3000, t)		
6	samples[i] = chirp(A, 1000, t)		
<u> </u>			

Aufgezeichnete Audiodateien

- a) und b) Kurvenform anzeigen mit wav-abspielen-und-anzeigen.py
- c) Analysieren mit Si8a-mitBeispielen.py.

Achtung:

Die samplerate in den Programmen sollte an die samplerate der Datei angepasst werden.

Nr.	Dateiname	samplerate	
10	wecker-40000.wav	40'000	
11	handyglocken-40000	40'000	
12	pipip-40000.wav	40'000	

13	akkord1-44100.wav	44'100	
14	akkord4-44100.wav	44'100	
15	LoRA-8000.wav	8'000	
16	noise-44100.wav	44100	

Aufgabe 2:

Lasse für einige Signale ein Sonogramm berechnen.

Für Töne, die sich zeitlich nicht verändern, gibt ein Sonogramm keine Zusatzinformation. Deshalb untersuche nur die Signale:

- a) mit den Programm künstliche-sonogramm.py: Chirp (Nr. 6)
- b) mit dem Programm Si8c-mitBeispielen.py
 - wav/harris.wav
 - eines von Nr. 10 bis 16 (das deiner Gruppe zugeteilt worden ist)