Si5351 Democode: Phase einstellen

Jason ist DIE Anlaufstelle für den Amateurfunk Bastler, was den PLL Chip Si5351 angeht. Er hat auch diverse Bibliotheken geschrieben.

Jason – Ripples in the Ether

Etherkit auf Github

* si5351phase.ino – Example for setting phase with Si5351Arduino library
* Copyright (C) 2015 Jason Milldrum <>
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program.  If not, see <>.
* Setting the phase of a clock requires that you manually set the PLL and
* take the PLL frequency into account when calculation the value to place
* in the phase register. As shown on page 10 of Silicon Labs Application
* Note 619 (AN619), the phase register is a 7-bit register, where a bit
* represents a phase difference of 1/4 the PLL period. Therefore, the best
* way to get an accurate phase setting is to make the PLL an even multiple
* of the clock frequency, depending on what phase you need.
* If you need a 90 degree phase shift (as in many RF applications), then
* it is quite easy to determine your parameters. Pick a PLL frequency that
* is an even multiple of your clock frequency (remember that the PLL needs
* to be in the range of 600 to 900 MHz). Then to set a 90 degree phase shift,
* you simply enter that multiple into the phase register. Remember when
* setting multiple outputs to be phase-related to each other, they each need
* to be referenced to the same PLL.

#include "si5351.h"
#include "Wire.h"
Si5351 si5351;
void setup()
  // Start serial and initialize the Si5351
  si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0);
  // We will output 14.1 MHz on CLK0 and CLK1.
  // A PLLA frequency of 705 MHz was chosen to give an even
  // divisor by 14.1 MHz.
  unsigned long long freq = 1410000000ULL;
  unsigned long long pll_freq = 70500000000ULL;
  // Set PLLA to the chosen frequency
  si5351.set_pll(pll_freq, SI5351_PLLA);
  // Set CLK0 and CLK1 to use PLLA as the MS source
  si5351.set_ms_source(SI5351_CLK0, SI5351_PLLA);
  si5351.set_ms_source(SI5351_CLK1, SI5351_PLLA);
  // Set CLK0 and CLK1 to output 14.1 MHz with a fixed PLL frequency
  si5351.set_freq(freq, pll_freq, SI5351_CLK0);
  si5351.set_freq(freq, pll_freq, SI5351_CLK1);
  // Now we can set CLK1 to have a 90 deg phase shift by entering
  // 50 in the CLK1 phase register, since the ratio of the PLL to
  // the clock frequency is 50.
  si5351.set_phase(SI5351_CLK0, 0);
  si5351.set_phase(SI5351_CLK1, 50);
  // We need to reset the PLL before they will be in phase alignment
void loop()
  // Read the Status Register and print it every 10 seconds
  Serial.print("SYS_INIT: ");
  Serial.print("  LOL_A: ");
  Serial.print("  LOL_B: ");
  Serial.print("  LOS: ");
  Serial.print("  REVID: ");

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.